FPGA Implementation of Machine Learning Hardware Accelerator for Mobile Applications of Brain-Computer Interface
نویسندگان
چکیده
منابع مشابه
development and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولBrain Computer Interface using Machine Learning
This paper presents the design and development of a complete hardware and software solution for a brain computer interface (BCI). It consists of a non-intrusive multiple channel data acquisition device which captures the electrical brain wave signals and passes the data to a computer. The computer then uses signal processing and machine learning algorithms to identify patterns in the signals re...
متن کاملBrain Imaging and Machine Learning for Brain-Computer Interface
Human-computer interfaces are in continuous development, from keyboard, mouse, touch screen, to voice dictation, gesture recognition, etc. The aim is to facilitate the interaction between the human brain and the resources offered by a machine or a computer. Recently, a wider interest has emerged in directly interfacing the brain and the computer. The development of methods that combine the nerv...
متن کاملMachine Learning Methods of the Berlin Brain-Computer Interface
This paper is a compilation of the most recent machine learning methods used in the Berlin Brain-Computer Interface. In the field of Brain-Computer Interfacing, machine learning has been mainly used to extract meaningful features from noisy signals of large dimensionality and to classify them to transform them into computer commands. Recently, our group developed different methods to deal with ...
متن کاملComparing Common Machine Learning Classifiers in Low-dimensional Feature Vectors for Brain Computer Interface Applications
There are lots of classification and feature extraction algorithms in the field of brain computer interface. It is significant to use optimal classification algorithm and fewer features to implement a fast and accurate brain computer interface system. In this paper, we evaluate the performances of five classical classifiers in different aspects including classification accuracy, sensitivity, sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2019
ISSN: 2475-8841
DOI: 10.12783/dtcse/iteee2019/28781